SF₅-BUILDING BLOCKS The organic chemistry of the pentafluorosulfanyl group (SF₅) has been developing since 1950's. As the SF_5 group is larger and more lipophilic than the CF_3 one, it is often considered as a "super-trifluoromethyl group". Over the past decade, the SF5-containing aromatic compounds have found great practical application in medicinal chemistry. | | NO ₂
CO ₂ H | SF ₅ | CF ₃ | SCF ₃
CO ₂ H | OCF ₃ | F
CO ₂ H | |--|--------------------------------------|-----------------|------------------|---------------------------------------|------------------|------------------------| | pKa
EtOH/H ₂ O 4.60
50:50 | | 4.82 | 5.11 | 5.15 | 5.16 | 5.28 | | Lipophilicity (π) of substituent X | | | | | | | | Х | SCF ₃ | SF ₅ | OCF ₃ | CF ₃ | F | Н | | π_{p} | 1.44 | 1.23 | 1.04 | 0.88 | 0.14 | 0 | ## **Properties** - One of the most electron-withdrawing - high chemical and thermal stability - high lipophilicity Our offer: >30 SF₅-building blocks in gram amounts in stock. Custom synthesis of further analogues and compound libraries ## References ¹ R. Paul et al. Chem. Rev. 2015, 1130, ² S. Altomonte et al. J. Fluor. Chem. 2012, 57. ³ P. Kirsch. Modern Fluoroorganic Chemistry. 2004, 146.